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Abstract

The ever-increasing data needs of scientific and engineering applications re-
quire novel approaches to managing and exploring huge amounts of informa-
tion in order to advance scientific discovery. In order to achieve this goal,
one of the main priorities of the international scientific community is address-
ing the challenges of performing scientific computing on exascale machines
within the next decade. Exascale platforms likely will be characterized by
a three to four orders of magnitude increase in concurrency, a substantially
larger storage capacity, and a deepening of the storage hierarchy. The current
development model of independently applying optimizations at each layer of
the system I/O software stack will not scale to the new levels of concurrency,
storage hierarchy, and capacity. In this article we discuss the current de-
velopment model for the I/O software stack of high-performance computing
platforms. We identify the challenges of improving scalability, performance,
energy efficiency, and resilience of the I/O software stack, while accessing a
deepening hierarchy of volatile and nonvolatile storage. We advocate for rad-
ical new approaches to reforming the I/O software stack in order to advance
toward exascale.
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1. Introduction

The ever-increasing data needs of scientific and engineering applications
require novel approaches and larger computing infrastructures to manage and
explore huge amounts of information [21]. In order to achieve this goal, one
of the main priorities of the international scientific community is addressing
the challenges of performing scientific computing on exaflop machines by
2020. One of the most critical scalability challenges is scaling the current
I/O software stack [10]. Understanding the limitations of the I/O software
stack in petascale systems and proposing radical solutions to address them
have become crucial for reaching the goal of building exascale systems, as
they are expected to have a high impact on increasing the rate of scientific
productivity.

In this article we argue that the current uncoordinated development
model of independently applying optimizations at each layer of the system
software I/O software stack will not scale to the new levels of concurrency,
storage hierarchy, and capacity [10]. Radical new approaches to reforming
the I/O software stack are needed in order to enable holistic system software
optimizations that can address cross-cutting issues such as power, resiliency,
and performance. The key insight is to investigate cross-layer control mech-
anisms and run-times, seeking to unify the access to several layers of volatile
and nonvolatile memories and to improve the scalability, performance, and
resilience of the I/O software stack.

The remainder of the paper is organized as follows. Section 2 presents
an overview of data-related challenges related to exascale architectures. The
subsequent sections discuss five main issues to be addressed in order to pre-
pare the I/O software stack for new levels of scalability: storage I/O data
path coordination (Section 3), cross-layer load balance (Section 4), exposing
and exploring data locality (Section 5), energy efficiency (Section 6), and
resilience (Section 7). Section 8 concludes with a brief summary.

2. Data-related challenges

Increasingly, researchers are recognizing that the evolution to exascale
will require overcoming several systemwide data-related challenges. In this
section we present an overview of the main data-related challenges classi-
fied in four categories as shown in Figure 1: applications, platform, system
software, and cross-cutting issues.

2



•  Big data"
• Data model"
•  Behavior (Data locality, I/O patterns, bursts) "

Applications"

•  Increasing concurrency"
• Deeper memory hierarchy"
•  Increasing storage capacity"
• Novel storage/memory technologies"

Platform"

•  I/O libraries"
• Middlewares"
• Operating Systems/File Systems"
•  Storage Systems"

System software"

•  Energy"
• Resilience"
•  Programmability"

Cross-cutting issues"

Figure 1: Data-related exascale challenges

2.1. Applications

Many scientific applications running on today’s large-scale supercomput-
ers are data intensive. Table 1 shows examples of data requirements for
some applications at Argonne National Laboratory. These applications com-
monly generate tens of terrabytes in a single simulation. Additionally, all the
applications from this sample require at least 1 TByte of on-line data.

The data requirements of scientific applications are widely expected to
become larger in the next few years, increasing the pressure on the storage
I/O system. Thus, it becomes increasingly important to better understand
application data models and to be able to efficiently map them on the un-
derlying storage. High-level I/O libraries such as HDF5 [6], Parallel netCDF
[25], and ADIOS [29] facilitate the design of application data models and
find increasing acceptance among computational scientists, but they still
face important challenges. In particular, mapping application models on
storage models is still inefficient, because no mechanisms are available for
systemwide optimization of storage I/O access. For instance, the common
POSIX storage model has significant shortcomings that limit its usability
in large-scale environments: strong consistency requirements strangle per-
formance and scalability, it lacks support for data locality and flexible data
layout, and it does not have a failure model. Because of these limitations,
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Table 1: Data requirements for selected 2011 INCITE applications at the Argonne Lead-
ership Computing Facility (ALCF) - Argonne National Laboratory.

Project On-Line Data Off-Line Data
(TBytes) (TBytes)

Combustion in Gaseous Mixtures 1 17
Protein Structure 1 2
Laser-Plasma Interactions 60 60
Type Ia Supernovae 75 3000
Nuclear Structure and Reactions 6 15
Fast Neutron Reactors 100 100
Lattice Quantum Chromodynamics 300 70
Fracture Behavior in Materials 12 72
Engineering Design of Fluid Systems 3 200
Multimaterial Mixing 215 100
Turbulent Flows 10 20
Earthquake Wave Propagation 1000 1000
Fusion Reactor Design 50 100

most high-level I/O libraries (i.e., HDF5, PnetCDF, ADIOS) pursue more
relaxed consistency models for performance reasons and have defined their
data models differently from POSIX.

Application behavior plays an important role in efficiently using the I/O
storage system. Many scientific applications have bursty access patterns,
alternating periods of intense storage I/O requests with periods of no I/O
at all [13]. These patterns can cause either contention or underutilization.
Novel approaches are necessary for absorbing peak demands and distributing
them over periods of inactivity. Further, data access locality of applications
needs to be better exploited in order to reduce communication.

2.2. Platforms

The architecture of most of today’s leadership high-end computing (HEC)
systems is hierarchical [7], as shown in the left-hand side of Figure 2. For
better scalability, computation is performed on a large number of strongly
interconnected cores and is segregated from storage resources. The storage
I/O functionality is typically offloaded to dedicated I/O nodes. The I/O
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High-Level I/O Library

I/O Middleware

I/O Forwarding

Parallel File Systems

Back-end storage
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Compute nodes

I/O nodes
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Maps application abstractions onto storage
abstractions (e.g.: HDF5, ParallelNetCDF)

Reduces the number of file system calls by
optimizations like collective I/O (e.g.: MPI-IO)

Offloads I/O functionality from compute nodes
(e.g.: IOFSL)

Offer a global name space and high
performance storage access (e.g.: GPFS,
Lustre, PVFS)

Block and storage object devices

Figure 2: Mapping of the I/O software stack (right-hand side) on the architecture of
current large-scale high-performance computing systems (left-hand side)

nodes are connected over a high-performance network to storage servers. The
storage servers offer access to the back-end storage (i.e., NVRAM, disks, and
tape).

Future exaflop platforms will likely be characterized by a three to four
orders of magnitude increase in concurrency, a substantially larger storage
capacity, and a deepening of the storage hierarchy [18]. Building exascale
systems will require architectural and technological shifts for overcoming the
current scalability barriers, while staying within an target energy budget of
20 MW.

Nonvolatile RAM (NVRAM) is considered one of the main memory tech-
nologies that will have a significant impact on energy-efficiency, performance,
access semantics, and resilience of the future exascale systems [18]. Re-
cent studies have focused on architectural solutions integrating RAM and
NVRAM [14], redefining system primitives to accommodate the integration
of NVRAM in the memory hierarchy [33], examining the role of NVRAM to
absorb I/O bursts of scientific applications [28], and analyzing the impact
of NVRAM on scientific applications [24]. However, the impact of introduc-
ing the NVRAM technologies in the storage stack remains an open problem,
with direct implications for all I/O stack levels, while the technology evolves.
Recently, researchers have expressed increasing agreement that scaling the
current I/O stack will require NVRAM storage burst buffer capability for
staging data in and out of an exascale machine [10]. However, various open
questions remain, such as where the burst buffers will be located (on the
compute nodes or I/O nodes), what is going to manage the burst buffer (file
system or middleware), which mechanisms and APIs are needed for control-
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ling the burst buffers, and how the burst buffers will be connected (into the
interconnect or on a data channel such as SAS).

2.3. I/O software stack

Figure 2 shows the mapping of the current I/O software stack on the
architecture of high-performance computing systems [16]. High-level I/O li-
braries such as HDF5 [6] and Parallel netCDF [25] run on compute nodes on
top of middleware. The middleware layer (e.g., MPI-IO [2]) runs as well on
compute nodes and provides access optimizations such as collective I/O [38]
in order to reduce the number of I/O operations sent to I/O nodes and file
systems. Since many applications do not use collective I/O, I/O delegation
has been proposed as a middleware mechanism for coalescing and optimiz-
ing independent I/O operations [32]. High-level I/O library and middleware
layers are optional; many applications access the storage through the POSIX
interface [13]. The recently developed I/O Forwarding Scalability Layer [8]
reduces the I/O load on compute nodes by offloading I/O functionality to
dedicated I/O nodes. The parallel file system layer provides a logical name
space and parallel access to back-end storage through servers running on
storage nodes. Parallel file systems such as GPFS [36], Lustre [1], and Or-
angeFS/PVFS [3] have been designed for supporting tens of thousands of
clients, but they will not scale for the expected concurrency increase of three
to four orders of magnitude. File system servers access and manage data and
metadata stored on the back-end storage.

The model for the I/O software stack described above suffers from a
number of problems:

1. As the depth of the storage hierarchy increases, one of the biggest con-
cerns is the I/O software stack programmability, defined as the facility
of developing global performance optimizations by system program-
mers. I/O system optimizations are often applied independently at
each system layer. However, this approach can cause mismatches be-
tween the requirements of different layers (for instance in terms of load,
locality, consistency) [10]. Because of this uncoordinated development,
understanding the interplay between optimizations at different layers
has become difficult even for parallel I/O researchers [26].

2. The path through the I/O software stack lacks mechanisms for adapting
to unexpected events such as sudden data volume variations and fail-
ures. However, managing data volume variability and failures requires
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cross-layer adaptive control mechanisms, which are unfortunately not
available in the state-of-the-art I/O software stack for HEC platforms.

3. As the system scale increases, exposing and exploring data locality
will become a key factor for improving both application performance
and energy efficiency. The expected deepening of the storage hierar-
chy brings novel opportunities to exploit locality at different layers of
the system architecture (e.g., compute node, I/O node, storage nodes).
However, existing storage I/O interfaces such as POSIX lack the capa-
bility of exposing and exploiting data locality.

These are critical problems for the promises that exascale platforms hold.
In this paper we argue that they need to be addressed in a synergistic manner,
through radical approaches that enable cross-layer optimizations of the I/O
software stack in exascale platforms.

Cross-layer mechanisms have already been successfully proposed in net-
working research in order to optimize system performance [27]. In storage
I/O most cross-layer optimizations are applied ad hoc and involve two ad-
jacent layers [26, 22, 35]. The need for an I/O middleware for efficiently
matching the applications requirements to storage has been identified as well
by the exascale I/O workgroup EIOW [5].

2.4. Cross-cutting issues

In the International Exascale Software Project Roadmap, the authors
identify a number of cross-cutting issues that will affect all aspects of system
software and applications at exascale [18]. Here we discuss the relationship
of three of these aspects (energy, resilience, and programmability) with the
redesign of the I/O software stack.

While energy efficiency can be improved to a substantial extent through
technological and architectural innovations, it has been shown that an in-
creasing amount of energy consumption is due to moving data inside a large
scale system [30]. In this respect, supporting the development of I/O software
through cross-layer mechanisms could enhance energy efficiency by reducing
the communication through a better exploitation of data locality and layout.

Resilience requires a systemwide approach. However, the current I/O
software stack lacks a failure model, since no mechanisms are available for
detecting, isolating, or recovering from failures of different stack layers. In
our opinion, a cross-layer mechanism with clear failure semantics can support
the design of resilient techniques and optimizations at different stack layers.
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Further, the design of cross-layer mechanisms and abstractions needs to
contribute to enhancing programmability, defined as the ease of developing
applications. The I/O software stack has to be redesigned to easily expose
and exploit data locality and concurrency, to hide the latencies, to avoid
congestion, and to identify and bypass failures in an early stage.

3. Storage I/O data path coordination

One of the most important shortcomings of the system software in HEC
machines is the lack of mechanisms for coordinating storage I/O policies
across the various layers of the I/O stack. This is likely to limit the scalability
of the storage hierarchy on future machines.

In our opinion novel mechanisms and abstractions are needed for con-
trolling the I/O flow on given paths between compute nodes and back-end
storage, for instance, for rerouting the I/O flow when encountering traffic
congestions or failures. We mention here three main aspects. First, research
is needed to identify information and mechanisms that have to be offered
at each stack layer in order to support the cross-layer control of the storage
I/O path. Second, hiding the access latency inside the I/O software stack
can be improved through proactive, multiple-layer data-staging policies, for
instance, by leveraging the predictable patterns of data-intensive applica-
tions for controlling write-back policy for writes and prefetching policy for
reads. Third, adaptive data staging can help change the data flow policy for
unexpected events such as unpredicted bursts. A possible solution to these
issues can be based on integrating an adaptive buffering mechanism into
each I/O software stack layer. For instance, a minimal adaptive mechanism
will permit buffers to dynamically shrink or grow, change the write-behind
and prefetching strategy, and change the next hop in the data path from
compute nodes to storage. An adaptive buffering mechanism can coordinate
the I/O data path based on the cross-layer control mechanisms, which will
continuously monitor and distribute run-time information such as failures,
performance, and resource utilization metrics at various layers. The results
of one of our studies integrating write-back and prefetching policies at two
different levels of I/O software stack of a Blue Gene/P system indicate that
I/O coordination of the I/O data flow may bring a substantial performance
benefit to applications [22].
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4. Cross-layer load balance in the I/O software stack

The continuous evolution of application requirements and platforms will
likely require more flexibility for shifting the load along the layers of the I/O
stack in order to improve the resource utilization, while reducing the con-
tention. Causes of storage I/O overload include data aggregation, processing
of data for exploiting locality, network transfers, and OS jitter.

For instance, the I/O forwarding layer has been proposed to off-load I/O
functions such as file system calls from compute nodes to I/O nodes [8]. This
approach increases the scalability of the computation on current HEC sys-
tems by reducing the operating system jitter on application nodes. However,
the expected concurrency growth of three to four orders of magnitude will
increase the pressure on the I/O nodes and will likely require a rebalance
of I/O functionality. Current I/O forwarding mechanisms rely on function
shipping, are employed unidirectionally, and are used for bridging only two
architectural layers (i.e., forward I/O from compute nodes to I/O nodes).

In our opinion the I/O software stack needs a flexible, cross-layer I/O
load-balancing mechanism. One possible solution is to build a channel for
bidirectional off-loading of I/O functionality by transporting hints, feedback,
and notifications and by shipping I/O functionality across layers. This chan-
nel will facilitate devising novel experiments for evaluating critical aspects
such as integration of NVRAM at various software stack layers, in situ pro-
cessing vs. postprocessing, techniques for absorbing peak demands and stag-
ing progressively, hierarchical aggregation of data, and hierarchical exploita-
tion of data locality.

5. Exposing and exploiting data locality

In exascale systems most energy is expected to be spent moving data [18].
Hence, efficiently managing and exploiting data locality will become critical
for system scalability within a limited energy budget.

In the current state-of-the-art software stack, data locality cannot be fully
controlled on the data path from application to the storage, which may cause
inefficient access. In particular, the standard MPI-IO data operations are not
locality-aware, no mechanisms exist that allow data accesses to take advan-
tage of data layout in the file system (e.g., I/O caching, data distribution
over servers, block alignment). On the other hand, most parallel file systems
strive to comply with the POSIX requirements. However, one of the main
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critiques of POSIX is that it does not expose data locality [34]. Other scal-
able file systems such as HDFS [20] have dropped the POSIX interface and
have been codesigned with processing frameworks such as MapReduce [17].
While these frameworks may simplify programming of a class of embarrass-
ingly parallel data-intensive computations and include best-effort strategies
to collocate computation and data, they are not general enough to efficiently
address the needs of scientific applications and have not been widely adopted
on the HEC infrastructure.

Exploiting data locality is directly linked to data layout awareness and
control. Existing solutions either offer the applications mechanisms for con-
trolling data layout of the file system (e.g., PVFS distributions [3], Clusterfile
logical and physical layout [23]) or propose intermediary layers for optimally
exploiting given data layouts through collective I/O [38], block alignment
[26], or mapping of application data models on a file system optimized lay-
out [11].

Additionally, a limited number of works have leveraged topology aware-
ness for improving the performance of storage I/O stack. Topology awareness
has been used for automatically selecting the number of data aggregators for
collective I/O operations [15]. Son et al. [37] present an approach for lever-
aging topology in I/O caching for shared storage systems. However, their
approach focuses on a particular topology: a two-dimensional mesh network.
File systems such as PanFS [4] and Ceph [42] offer infrastructure topology
awareness, but to the best of our knowledge these mechanisms have not been
explored for building topology-aware storage services or for improving the
scalability of the I/O software stack.

The lack of coordination of data locality management can cause ineffi-
ciencies due to factors such as data redundancies, unnecessary data reorga-
nization, unaligned access, lost locality-aware optimization opportunities, or
unnecessary consistency constraints. To the best of our knowledge, currently
no abstractions and mechanisms exist for coordinating data locality man-
agement across the I/O software stack. These cross-layer abstractions and
mechanisms can substantially improve the programmability of system-wide
data locality control (e.g., by taking into consideration data layout, archi-
tectural characteristics such as topology or storage hierarchy). While we do
not advocate writing the I/O stack from scratch, we believe that a proper
restructuring based on cross-layer feedback will significantly increase the ca-
pacity to optimize individual I/O stack layers and rebalance the I/O stack
functionality across layers depending on the architectural and technological
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advancements.

6. Energy efficiency

Energy is the one of the most prominent barriers in achieving exascale.
According to opinion leaders two orders of magnitude improvement in energy
efficiency is required for building cost-efficient exascale systems within the
next decade. A large share of this improvement corresponds to data, as
energy cost of moving data has exceeded the energy cost of computing [19].

As a cross-cutting aspect, energy efficiency of the storage I/O stack can
be improved through both software and hardware solutions. With respect to
hardware, nonvolatile RAM (NVRAM) is considered one of the storage tech-
nologies that will have a significant impact on energy-efficiency, performance,
access semantics, and resilience of the future exascale systems [18].

With respect to software, exploiting data locality across the whole I/O
stack and storage hierarchy, as discussed in Section 5, is expected to bring
the highest benefit in terms of energy efficiency. However, other directions
may offer promising results. We believe that if properly balanced, even the
current storage systems can support larger-scale concurrency, as it remains
underutilized for significantly large time windows because of the bursty I/O
behavior [13]. Absorbing bursts in low-energy NVRAM devices and gradually
spilling them to disks [28] is a promising technique. However, the role of the
burst buffers inside the storage hierarchy and the I/O software stack is still
an open research issue. Other techniques developed for data centers such as
power-aware layout [9], gear-levelling [41, 39], and write-offloading [31, 40]
can be useful for reducing the energy spent by disks in periods of low activity,
but their application in HEC systems needs to be investigated.

7. Resilience

The expected scale of the future systems will increase the probability of
failures. As we advance toward exascale, it becomes critical to minimize the
interruption of system operation in the presence of failures. Current expe-
rience shows that storage software is one of the main causes of application
interruptions. For instance, Table 2 shows the root causes of interrupt events
on the Intrepid Blue Gene/P system at Argonne National Laboratory during
2010 and 2011. The majority of problems arise from misbehaving clients
that propagated through the entire system. In this case this propagation
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was made possible by the tight coupling among distributed components of
the GPFS file system. File system state is shared with clients in order to
enforce POSIX storage abstraction and to enable coherent client caching.

Table 2: Root causes of interrupt events on the Argonne Intrepid BG/P system for 2010-
2011. Thanks to C. Goletz and B. Allcock (ANL).

Component 2010 2011
GPFS 101 77
Machine 79 35
Service node (DB) 29 8
Myrinet HW/SW 28 32
PVFS 15 7
Scheduler 14 42
Admin Error 8 7
DDN 6 0
Service network 2 0

One key for improving resilience is to decouple the health of the compo-
nents of the storage system based on stateless protocols (e.g., NFSv3, PVFS)
and through techniques such as sandboxing. However, achieving failure isola-
tion across the storage software stack is nontrivial: it has direct implications
on the abstractions offered by the storage system, especially when caching
and buffering are done at several system levels. In this context, reducing the
complexity of resilience problem will most likely require (1) pushing strong
consistency support up into the libraries or applications, (2) providing effi-
cient mechanisms for cross-layer information dissemination in order to sup-
port the adaptation process, and (3) providing mechanisms for redirecting
traffic based on failure and for balancing client traffic with reconstruction.

Achieving a high degree of resilience still faces many open problems.
Novel storage abstractions are needed, because the popular POSIX abstrac-
tion does not include a failure model, while its strong consistency require-
ments make the implementation of resilient protocols difficult. Further, re-
search is needed for better understanding which failures the storage system
should automatically protect against and which should be reported to the
users and require their intervention. In general, failure traceability and early
reaction capacity have to be substantially improved in order to adequately
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respond to the expectations of future exascale systems.

8. Conclusions

In this paper we have made the case for reforming the I/O software stack
of extreme-scale systems. We advocate for cross-layer control mechanisms
based on application hints, feedback dissemination, notification, and I/O
functionality shipping throughout the I/O software stack. These mecha-
nisms are currently not available for supporting the development of storage
I/O optimizations. We claim that novel approaches of providing adaptive
control of data staging throughout the I/O stack are needed. We are not
aware of any current approach of coordinating this data path along the ver-
tical dimension from application to storage. We believe that I/O researchers
should focus on improving the data path from applications to storage through
data models that will smooth evolution from the currently popular POSIX
to novel approaches that better map complex data to the storage system. As
energy is directly related to data locality, action is needed for addressing the
current lack of support for exposing and exploiting data locality throughout
the I/O software stack. We believe that timely reforming of the I/O stack
will smooth the way toward reaching exascale, by facilitating the scaling to
expected increases in concurrency and storage hierarchy depth [12].
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